

IAE Contribution for 3rd AIAA CFD High Lift Prediction Workshop (HiLiftPW-3)

Instituto de Aeronáutica e Espaço

021

Ricardo Galdino da Silva, Leonardo M.M.O. Carvalho, João Luiz F. Azevedo

3rd AIAA CFD High Lift Prediction Workshop Denver, CO June 3-4, 2017

Outline

- Summary of Cases Completed
- Code Summary
- Case 1a
- Cases 2a and 2c
- Concluding Remarks

Summary of cases completed: BRU3D, d-HLCRM_UnstrMixed_ANSA,, E-JSM_UnstrMixed_ANSA V1, Standard Spalart-Allmaras Turbulence Model (Note 1 (c)).

Case	Alpha=8, Fully turb, grid study	Alpha=16, Fully turb, grid study	Other	
1a (full gap)	yes	yes		
1b (full gap w adaption)	no	no		
1c (partial seal)	no	no		
1d (partial seal w adaption)	no	no		
Other				
Case	Polar, Fully turb	Polar, specified transition	Polar, w transition prediction	Other
2a (no nacelle)	yes	no	no	
2b (no nacelle w adaption)	no	no	no	
2c (with nacelle)	yes	no	no	
2d (with nacelle w adaption)	no	no	no	
Other				
Case	2D Verification study	Other		ı
3	yes			
Other				

Code Summary - BRU3D

- 3-D compressible Reynolds-averaged Navier-Stokes (RANS) equations.
 - The flow is assumed to be fully turbulent.
- Standard Spalart-Allmaras turbulence model (Note 1c).
 - One equation model.
 - Linear eddy-viscosity assumption.
- Unstructured grid finite volume code.
- Second order accuracy in space.
 - Roe flux-difference splitting method.
 - To achieve second order accuracy in space, primitive properties are linearly reconstructed at volume faces with a MUSCL scheme.
 - Venkatakrishnan limiter.
- 1st-order backward Euler point-implicit scheme is used to march the solution.

- Case 1a HL-CRM Grid Convergence Study, full chord flap gap.
 - MAC = 275.8 in
 - Wing semi-span = 1156.75 in
 - Sref/2 = $297,360.0 \text{ in}^2$
 - MRC : x=1325.90 in, y=468.75 in, z=177.95 in
 - Mach = 0.20
 - Re = 3.26 million
 - AOA's = 8 and 16 deg
 - Mesh: d-HLCRM UnstrMixed ANSA

• Lift vs. grid point no.

• Lift vs. grid point no.

• Drag vs. grid point no.

• Drag vs. grid point no.

• Pitching Moment vs. grid point no.

• Pitching Moment vs. grid point no.

• AOA = $8 \deg$.

• AOA = $8 \deg$.

• The inboard flap and outboard flap present a flow detachment

• AOA = 16 deg.

• The flow detachment at the aileron region increases as the mesh is refined.

• AOA = 16 deg.

• The outboard flap present a flow detachment

Cases 2a and 2c

- Case 2a JAXA Standard Model (JSM) Nacelle/Pylon OFF (WB).
- Case 2c JAXA Standard Model (JSM) Nacelle/Pylon ON (WBPN).
- MAC = 529.2 mm
- Wing semi-span = 2300.0 mm
- Sref/2 = $1,123,300.0 \text{ mm}^2$
- MRC: x=2375.7 mm, y=0.0 mm, z=0.0 mm
- Mach = 0.172
- Re = 1.93 million
- AOA's = 4.36, 10.47, 14.54, 18.58, 20.59 and 21.57deg
- Mesh: E-JSM_UnstrMixed_ANSA V1

Cases 2a and 2c Lift Curve

Lift curve

Cases 2a and 2c Drag Polar

Drag Polar

Cases 2a and 2c Pitching Moment

Pitching Moment

Cases 2a and 2c Delta

Deltas (WBPN minus WB)

• WB - AOA = 4.36 deg

• WBPN - AOA = 4.36 deg

• WB - AOA = 10.48 deg

• WB - AOA = 14.54 deg

• WBPN - AOA = 18.58 deg

• WBPN - AOA = 20.59 deg

• WB - AOA = 21.57 deg

JAXA – WB and WBPN - Oil flow

- Case 2a WB configuration Stall characteristics
 - Experimental results The stall is triggered by the horseshoe vortex at the wing root.
 - Numerical results The stall starts further outboard along the wing span.
- Case 2c WBPN configuration Stall characteristics
 - Experimental results and numerical results show stall as consequence of wing root horseshoe vortex and nacelle-wake separation on inboard wing panel.
 - These flow features prevent the growth of wing load at the inboard wing panel region.

Postprocessing: Surface Data Extraction for JSM (Case 2)

• WBPN - SLAT E - E

AOA = 4.36 degAOA = 10.47 deg

• WBPN - SLAT E - E

AOA = 14.54 deg AOA = 18.58 deg

• WBPN – SLAT E - E

AOA = 20.57 deg AOA = 21.59 deg

WBPN – MAIN ELEMENT E - E

WBPN – MAIN ELEMENT E - E

AOA = 14.54 deg AOA = 18.58 deg

WBPN – MAIN ELEMENT E - E

• WBPN-FLAP E-E

• WBPN – FLAP E - E

AOA = 14.54 deg AOA = 18.58 deg

• WBPN - FLAP E - E

AOA = 20.57 deg AOA = 21.59 deg

Concluding Remarks

Case 1a

- The flow at inboard flap reattaches as the AOA increases from 8 to 16 deg.
- On the other hand, the flow at outboard flap remains separated.
- The largest variations in Cp distribution, as the mesh is refined, occur in the outboard flap and at the aileron region for AOA 16 deg.
- The differences are related to flow separation.
- The mesh refinement modifies the peak of minimum Cp along the main element.

Concluding Remarks

- Case 2a: WB configuration Stall characteristics
 - Experimental results Stall is triggered by the horseshoe vortex at the wing root.
 - Numerical results Stall starts further outboard along the wing span.
- Case 2c: WBPN configuration Stall characteristics
 - Experimental results and numerical results show stall as consequence of wing root horseshoe vortex and nacelle-wake separation on inboard wing panel.
 - These flow features prevent the growth of the wing load at the inboard wing panel region.
- For Cases 2a (WB) and 2c (WBPN), the comparison between experimental results and numerical results show a good agreement when the flow is attached.

Thank you!

Additional Slides

Postprocessing: Surface Data Extraction for JSM (Case 2)

• WB - SLAT B - B

• WB - SLAT B - B

• WB - SLAT B - B

AOA = 20.57 deg AOA = 21.59 deg

• WB - MAIN ELEMENT B - B

AOA = 4.36 deg

• WB - MAIN ELEMENT B - B

AOA = 14.54 deg AOA = 18.58 deg

• WB – MAIN ELEMENT B – B

AOA = 20.57 deg AOA = 21.59 deg

• WB-FLAP B-B

AOA = 4.36 deg

• WB-FLAP B-B

AOA = 14.54 deg

• WB-FLAP B-B

AOA = 20.57 deg AOA = 21.59 deg

Postprocessing: Surface Data Extraction for JSM (Case 2)

• WB - SLAT E - E

• VVD OLAI L-L

AOA = 10.47 deg

BRU3D Results

2250

2260

• WB - SLAT E - E

AOA = 14.54 deg

• WB - SLAT E - E

AOA = 20.57 deg AOA = 21.59 deg

• WB – MAIN ELEMENT E - E

AOA = 4.36 deg AOA = 10.47 deg

WB – MAIN ELEMENT E - E

AOA = 14.54 deg AOA = 18.58 deg

WB – MAIN ELEMENT E - E

• WB – FLAP E - E

• WB - FLAP E - E

• WB-FLAP E-E

Postprocessing: Surface Data Extraction for JSM (Case 2)

• WB – SLAT H - H

2940

Х

2960

2940

х

2960

2980

2980

• WB - SLAT H - H

• WB - SLAT H - H

AOA = 20.57 deg AOA = 21.59 deg

• WB – MAIN ELEMENT B – B

WB – MAIN ELEMENT H – H

WB – MAIN ELEMENT H – H

Postprocessing: Surface Data Extraction for JSM (Case 2)

• WBPN - SLAT B - B

AOA = 4.36 deg AOA = 10.47 deg

• WBPN - SLAT B - B

• WBPN - SLAT B - B

AOA = 20.57 deg AOA = 21.59 deg

• WBPN – MAIN ELEMENT B – B

• WBPN – MAIN ELEMENT B – B

• WBPN – MAIN ELEMENT B – B

AOA = 20.57 deg AOA = 21.59 deg

• WBPN – FLAP B – B

AOA = 4.36 deg

AOA = 10.47 deg

BRU3D Results

BRU3D Results

• WBPN – FLAP B – B

• WBPN – FLAP B – B

AOA = 20.57 deg AOA = 21.59 deg

Postprocessing: Surface Data Extraction for JSM (Case 2)

• WBPN - SLAT E - E

AOA = 4.36 degAOA = 10.47 deg

• WBPN - SLAT E - E

• WBPN – SLAT E - E

AOA = 20.57 deg AOA = 21.59 deg

WBPN – MAIN ELEMENT E - E

WBPN – MAIN ELEMENT E - E

WBPN – MAIN ELEMENT E - E

• WBPN-FLAP E-E

• WBPN – FLAP E - E

• WBPN - FLAP E - E

AOA = 20.57 deg AOA = 21.59 deg

Postprocessing: Surface Data Extraction for JSM (Case 2)

• WBPN - SLAT H - H

AOA = 4.36 deg AOA = 10.47 deg

• WBPN - SLAT H - H

• WBPN - SLAT H - H

WBPN – MAIN ELEMENT H – H

AOA = 4.36 degAOA = 10.47 deg

WBPN – MAIN ELEMENT H – H

WBPN – MAIN ELEMENT H – H

AOA = 20.57 deg AOA = 21.59 deg

Concluding Remarks

Case 1a

- The flow at inboard flap reattaches as the AOA increases from 8 to 16 deg.
- On the other hand, the flow at outboard flap remains separated.
- The largest variations in Cp distribution, as the mesh is refined, occur in the outboard flap and at the aileron region for AOA 16 deg.
- The differences are related to flow separation.
- The mesh refinement modifies the peak of minimum Cp along the main element.

Concluding Remarks

- Case 2a: WB configuration Stall characteristics
 - Experimental results Stall is triggered by the horseshoe vortex at the wing root.
 - Numerical results Stall starts further outboard along the wing span.
- Case 2c: WBPN configuration Stall characteristics
 - Experimental results and numerical results show stall as consequence of wing root horseshoe vortex and nacelle-wake separation on inboard wing panel.
 - These flow features prevent the growth of the wing load at the inboard wing panel region.
- For Cases 2a (WB) and 2c (WBPN), the comparison between experimental results and numerical results show a good agreement when the flow is attached.

Thank you!